Binghamton CS-220

University Fall 2015

Organizing C Code

Computer Systems No Reference

CS-220
Fall 2015

Binghamton

University

Problem — Single File Code

* Many different functions
* Hard to find the code you need to work with

e What is the best order for the functions in the file?

* By category?
 All allocation functions together
 All setter functions together
* By Call Tree?
 What if function_xis called by function_1 AND function_27?

 Alphabetically?

Binghamton CS-220

University Fall 2015

Solution: Organize by Data Type

* For example, project 2

* warehouse.c:
 All the functions that deal with the warehouse itself, getting and processing an order

e slots.c
 Functions which deal with the slots on the workbench

void initSlots();

void getBin(int bin, int slot);
int findSlot(intbin);

void getWidget(int bin);
void printEarnings();

Binghamton CS-220

University Fall 2015

Abstraction

* Think of the workbench as an object

* There are certain things you can do with this object
* initialize
* get a bin from the warehouse and put it on the workbench
* Figure out which slot on the workbench a bin is in
* get a widget out of a bin on the workbench
 print a report that talks about the cost and earnings

Binghamton CS-220

University Fall 2015

Create Abstraction

» Make a distinction between...

* What is required to USE a group of functions

and

 What is required to IMPLEMENT a group of functions

Binghamton

CS-220

University

Organize by File

* File Name: Group Name e.g. “slots” for workbench slots

* Everything needed to USE a group in header (.h) file e.g. slots.h

* Typically a typedef for any special data types needed
* Typically declarations of functions that work with that data type

* Everything needed to IMPLEMENT a group in code (.c) file e.g.
slots.c
e #include the header file
* #include all the header files needed for this code
* Global declarations for data available to the functions in this code
* Definitions of functions

Fall 2015

Binghamton CS-220

University Fall 2015

Compiling Multi-File Source

* gcc —g -0 packem warehouse.c slots.c ...
* Specify all c files

* Code files will include headers .
recompile if any

e In a Makefile.. of these change

packem : warehouse.c slots.c slots.h
gcc —g —0 packem warehouse.c slots.c

but only need

code files in gcc cmd

Binghamton CS-220

University Fall 2015

Alternative.... Object Code

packem : warehouse.o slots.o
gcc —g -0 packem warehouse.o slots.o

warehouse.o : warehouse.c slots.h
gcc -g -0 warehouse.o warehouse.c

slots.o : slots.c slots.h
gcc -g —o slots.o slots.c

clean:
-rm packem warehouse.o slots.o

Binghamton CS-220

University Fall 2015

Object Code Pros and Cons

Advantages Disadvantages
* Only need to recompile what * Need extra disk space for
has changed and relink object code

* Need to recompile lots of code
if header file changes

CS-220

Binghamton
Fall 2015

University

Note on Function Names

 warehouse.c can invoke a function that is defined in slots.c
* .e.g. getBin(bin,slot)
» warehouse.o must keep the NAME of the function invoked

* The main function has no idea where getBin instructions are
* Even if there is no debug (-g) information!

* That’s why function names are always available in GDB

Binghamton CS-220

University Fall 2015

“Abstract Data Type”

* Special typedef trick

* Specify a type is a pointer to a struct without defining the struct!
* A pointer is a pointer is a pointer
* Violates C’s “define before use” rule!

* Put the typedef in your header file (.e.g object.h)

» User’s of this data type can declare and use pointers to the struct
* User’s of this data type CANNOT access fields in that struct!

* Put the definition of the struct in your code file (e.g. object.c)
* Code file can declare and use pointers to the struct
* Code file can access fields in that struct!

Binghamton

CS-220
Fall 2015

University

Example: Linked List Node

node.h
typedef struct Inode * node;

node makeNode(int val);

int getVal(node n);

void setVal(node n,int val);
node getNext(node n);

void setNext(node n, node t);
void freeNode(node n);

node.c
#include "node.h"

#include <stdlib.h>
struct Inode {
int val;

node next; };

node makeNode(int val) {

node n = (hode)malloc(...

Binghamton CS-220

University Fall 2015

Using an Abstract Data Type

#include <node.h>

void push(stack s, int val) {
node n=makeNode(val);
setNext(n,s—>head);
s—->head=n;

Binghamton CS-220

University Fall 2015

ADT Pros and Cons

Advantages Disadvantages
* Confine code which works on ° Requires "getters" and

nodes to nodes.c y ., .
. . , setters” for each field
* Code in other files can’t mess

with the internals of nodes * Complicates function names
’ ‘iAﬁ“ n%%CL%.}éandllng is encapsulated . pequires discipline (compiler

 Allows different implementation doesn’t do all the checking for
by changing node.c you)

* Enables usage of nodes.c in
multiple programs

Binghamton CS-220

University Fall 2015

Writing Object Oriented C

OO Terminology C implementation

* class * structure / typedef

* object * pointer to structure instance
* private fields * structure members

* creator method * creation function

* methods * functions w/ ptr argument

* Inheritance e Structure ref. structure

Binghamton CS-220

University Fall 2015

Object Oriented C

* C++ handles method names by mangling class/method name
* Put class name in all method namesin C

* C++ handles “this” object with -> syntax
 Pass “this” as first parameter

* C++ has fancy private/public/friend stuff
e Manage this on our own

