
Binghamton

University

CS-220

Fall 2015

Organizing C Code

Computer Systems No Reference



Binghamton

University

CS-220

Fall 2015

Problem – Single File Code

• Many different functions

• Hard to find the code you need to work with

• What is the best order for the functions in the file?
• By category?

• All allocation functions together

• All setter functions together 

• …

• By Call Tree?
• What if function_x is called by function_1 AND function_2?

• Alphabetically?



Binghamton

University

CS-220

Fall 2015

Solution: Organize by Data Type

• For example, project 2
• warehouse.c:

• All the functions that deal with the warehouse itself, getting and processing an order

• slots.c
• Functions which deal with the slots on the workbench

void initSlots();

void getBin(int bin, int slot);

int findSlot(int bin);

void getWidget(int bin);

void printEarnings();



Binghamton

University

CS-220

Fall 2015

Abstraction

• Think of the workbench as an object

• There are certain things you can do with this object
• initialize

• get a bin from the warehouse and put it on the workbench

• Figure out which slot on the workbench a bin is in

• get a widget out of a bin on the workbench

• print a report that talks about the cost and earnings



Binghamton

University

CS-220

Fall 2015

Create Abstraction

• Make a distinction between…

• What is required to USE a group of functions

and

• What is required to IMPLEMENT a group of functions



Binghamton

University

CS-220

Fall 2015

Organize by File

• File Name: Group Name e.g. “slots” for workbench slots

• Everything needed to USE a group in header (.h) file e.g. slots.h
• Typically a typedef for any special data types needed

• Typically declarations of functions that work with that data type

• Everything needed to IMPLEMENT a group in code (.c) file e.g. 
slots.c

• #include the header file

• #include all the header files needed for this code

• Global declarations for data available to the functions in this code

• Definitions of functions



Binghamton

University

CS-220

Fall 2015

Compiling Multi-File Source

• gcc –g –o packem warehouse.c slots.c …
• Specify all c files

• Code files will include headers

• In a Makefile…

packem : warehouse.c slots.c slots.h

gcc –g –o packem warehouse.c slots.c

recompile if any 
of these change

but only need
code files in gcc cmd



Binghamton

University

CS-220

Fall 2015

Alternative…. Object Code

packem : warehouse.o slots.o

gcc –g –o packem warehouse.o slots.o

warehouse.o : warehouse.c slots.h

gcc –g –o warehouse.o warehouse.c

slots.o : slots.c slots.h
gcc –g –o slots.o slots.c

clean :

-rm packem warehouse.o slots.o



Binghamton

University

CS-220

Fall 2015

Object Code Pros and Cons

Advantages

• Only need to recompile what 
has changed and relink

Disadvantages

• Need extra disk space for 
object code

• Need to recompile lots of code 
if header file changes



Binghamton

University

CS-220

Fall 2015

Note on Function Names

• warehouse.c can invoke a function that is defined in slots.c
• .e.g. getBin(bin,slot)

• warehouse.o must keep the NAME of the function invoked
• The main function has no idea where getBin instructions are

• Even if there is no debug (-g) information!

• That’s why function names are always available in GDB



Binghamton

University

CS-220

Fall 2015

“Abstract Data Type”

• Special typedef trick

• Specify a type is a pointer to a struct without defining the struct!
• A pointer is a pointer is a pointer
• Violates C’s “define before use” rule!

• Put the typedef in your header file (.e.g object.h)
• User’s of this data type can declare and use pointers to the struct
• User’s of this data type CANNOT access fields in that struct!

• Put the definition of the struct in your code file (e.g. object.c)
• Code file can declare and use pointers to the struct
• Code file can access fields in that struct!



Binghamton

University

CS-220

Fall 2015

Example: Linked List Node

node.h

typedef struct lnode * node;

node makeNode(int val);

int getVal(node n);

void setVal(node n,int val);

node getNext(node n);

void setNext(node n, node t);

void freeNode(node n);

node.c
#include "node.h"

#include <stdlib.h>

struct lnode {

int val;

node next; };

node makeNode(int val) {

node n = (node)malloc(…



Binghamton

University

CS-220

Fall 2015

Using an Abstract Data Type

#include <node.h>

void push(stack s, int val) {

node n=makeNode(val);

setNext(n,s->head);

s->head=n;

}

…



Binghamton

University

CS-220

Fall 2015

ADT Pros and Cons

Advantages
• Confine code which works on 

nodes to nodes.c
• Code in other files can’t mess 

with the internals of nodes
• All node handling is encapsulated 

in nodes.c
• Allows different implementation 

by changing node.c
• Enables usage of nodes.c in 

multiple programs

Disadvantages

• Requires “getters” and 
“setters” for each field

• Complicates function names

• Requires discipline (compiler 
doesn’t do all the checking for 
you)



Binghamton

University

CS-220

Fall 2015

Writing Object Oriented C

OO Terminology

• class

• object

• private fields

• creator method

• methods

• Inheritance

C implementation

• structure / typedef

• pointer to structure instance

• structure members

• creation function

• functions w/ ptr argument

• Structure ref. structure



Binghamton

University

CS-220

Fall 2015

Object Oriented C

• C++ handles method names by mangling class/method name
• Put class name in all method names in C

• C++ handles “this” object with -> syntax
• Pass “this” as first parameter

• C++ has fancy private/public/friend stuff
• Manage this on our own


